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Monolayer flow on a thin film 
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(Received 19 January 1987 and in revised form 10 December 1987) 

Two-dimensional flow of a surface-active monolayer on a thin viscous film is 
considered. Simplifications of negligible gravity and pressure forces are made. 
Interfacial properties are described by simple model equations of state. Solutions are 
obtained for when the monolayer is scraped along the interface by a barrier and a 
steady state exists where surface advection is balanced by surface diffusion. Surface 
velocity, film thickness and spreading rate dependence on surface diffusivity arc’ 
examined. 

1. Introduction 
A fundamental property of the lung is the surface-tension characteristics of its 

liquid lining which exert global effects on pulmonary function (West 1979). A well- 
known feature of an air-cycled lung is its pressure-volume hysteresis loop. When the 
lung is liquid-cycled, this loop nearly closes and the lung’s compliance increases, thus 
implicating the importance of the interfacial mechanics (Von Neergaard 1929). 
Surface-tension-area loops of cycled interfaces which contain surface-active agents 
similar to those in the lung (Bienkowski & Skolnick 1972) strongly reflect the 
corresponding pressure-volume loops, particularly their dynamic response (Grotberg, 
Mitzner & Davis 1980). Although this aspect of lung physiology has drawn a good 
deal of attention, little work has been done to study how these interfacial forces may 
be influenced by inhaled substances. especially liquid aerosols, or harnessed for 
medical purposes. 

When a drug or toxin is dissolved in aerosol droplets. those solutes that arc poorly 
soluble or absent in the gas phase can only reach the circulation by direct aerosol 
contact with the lung’s liquid lining. In  addition to the delivery of medical aerosols, 
many types of hazardous environments are found in the industrial setting, where oil 
mists and other airborne contaminants are encountered by humans (Schreck 1982). 
The dynamics of the droplet interaction with the lining is an important aspect of this 
transport problem that has not previously been investigated. An approach toward 
this phenomenon based on the fluid mechanics of the system should give useful 
information about the droplet-lining interaction which can form a basis for designing 
experiments necessary to evaluate the mechanics and transport phenomena related 
to surface-active material inhaled into the lung. 

The study of one liquid spreading upon another has been pursued previously by 
Di Pietro, Huh & Cox (1978); Di Pietro & Cox (1979, 1980) and Foda & Cox (1980) 
who deal mainly with deep substrate-fluid layers, compared to the contaminant. 
Unlike these models, in the lung the droplet and lining can have comparable 
thicknesses. These studies provide a fairly comprehensive ovcrview of the interfacial 
mechanics and all introduce the concept of a thin, monomolecular spreading layer 
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above part of the substrate. The intermolecular forces then give rise to interfacial 
tension variation and therefore to surface tractions. However. with a deep substrate, 
resistive forces due to viscous drag of the substrate fluid is smaller, compared to that 
due to a thin-layer substrate, and therefore spreading rates arc faster. Consequently, 
slow processes like surface diffusion in the interface may be ignored when considering 
those flows. Many other concepts developed in t,he ‘ thick-layer studies ‘ are, however, 
useful when the substrate laycr is thin since the corresponding studies of that 
situation (Levich 1962; Yih 1969; Adler & Sowerby 1970; Ahmad & Hanson 1972; 
Hussain, Fatima & Ahmad 1975) are less well developed, both theoretically and 
experimentally. Thc first three thin-layer publications solve the same types of 
problems, with increasing geometrical complexity, and consider flows where the 
entire substrate is covered by a molecularly thin layer (i.e. with no droplet on the 
substrate) which greatly simplifies the description of the interfacial properties. The 
latter two papers mainly give experimental results. 

With the exception of Adler & Sowerby’s work, all of the studies, including the 
experimental work, deal with two-dimensional gcometries. This work is also 
restricted to two dimensions. Additionally, many of t,he studies deal with steady- 
state motions, requiring special conditions so that such a, state is establishcd. 
Considering such flows is a useful first step in the development of t,he subject, though 
not a comprehensive one, and this approach is adopted for most of what follows. 
Some of the recent deep-layer studies (particularly Foda & Cox 1980) consider more 
general unsteady motions and experiments presented by Ahmad & Hanson (1972) 
deal with unsteady effects. 

With the scales relevant for deep-layer spreading, surface diffusion is not an 
important process, however, for thin-layer spreading somc account of this transport 
mechanism is warranted. Previous work reflects this fact and while none of the deep- 
layer studies consider surface diffusion, most thin-layer studies do. For thin-layer 
flows the limit of small diffusion is singular in the sense that. neglecting such surface- 
transport processes leads to mathematical solutions which are not smooth, as we 
show below. Including surface diffusion ‘smoothes out’ the flow, but other effects 
such as capillarity forces may accomplish this also. Here, we consider only the 
influence of surface diffusion. It is interesting to note that neglecting surface diffusion 
does not lead to obviously singular solutions for any of the thick-layer flows, 
reflecting the relative unimportance of surface diffusivity in those cases. 

In  the following sections the dynamics of a single drop spreading on a thin film of 
a second fluid is considered. It is designed to  be a general model that represents this 
category of problems rather than the lung system itself. Specific assumptions which 
deviate from the propert,ies of the lung lining represent potential modifications that 
further modelling could employ. For the present purposes, this first primitive 
analogue will be sufficiently complicated and instructive. The most important 
physical result sought is the sprcading rate of the deposited aerosol, the rate at which 
surface area is engulfed by the spreading drop, sincc thc proportion of lung area 
affected will determine the extent of the response. The goal, therefore, is to categorize 
the spreading rate in terms of simple parameters which may be measured in vi t ro,  or 
inferred in vivo, for a variety of compounds likely to  be encountered. 

2. The model problem 
We model the film as a thin layer above a flat wall, since the airway wall radius 

of curvature is typically very large compared to the film thickness. We treat the 
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FIGIJRE I .  Schematic of a two-dimensional droplet on the surface of a thin fluid layer above a 
rigid wall. 

lining fluid as Newtonian, using a subscript 2 to signify its properties, and assume 
that a: is constant for our model problem. Both of these asumptions deviate from 
the actual lung system, but allow us to address the underlying fluid dynamics 
pertinent to our simpler model. Suppose now that the surface is exposed to an 
insoluble aerosol droplet, which has characteristic surface tension a,* a t  its air 
interface and aT2 at  the interface between the aerosol droplet and the liquid lining. 
Figure 1 depicts the assumed two-dimensional geometry. Equilibrium of the droplet 
configuration depends upon the parameters o.:, cr; and a:2 according to the 
parameter S* where 

s* = a;-ag-cT:, (2.1) 

and S* is termed the spreading coefficient, used and defined by many authors (Foda 
& Cox 1980; Adamson 1967; Gaines 1965; Harkins 1952). If S* > 0, the droplet 
spreads and if S* < 0, the droplet contracts. Clearly we are interested in problems 
where S* > 0 as spreading drops have the potential to participate in transport due 
to convection and consequently exert a greater influence. 

Given that, spreading occurs it is apparent that a net outward force would act a t  
the point P in figure 1. However, this would imply that an unacceptably large stress 
(force per unit area) acts in the neighbourhood of P. It has been suggested that a thin 
layer of fluid comprised of the aerosol molecules extends from P onto the lining. The 
layer is so thin that it is best considered as a surface concentration, r*. This allows 
the surface tension to vary smoothly from the clean-surface value to the value of the 
combined tensions a t  P. Such thin layers are generally called monolayers although 
this is only literally correct for P < c, being the critical surface concentrat~ion 
a t  which aerosol molecules are effectively close packed in a two-dimensional lattice. 
The coupled monolayer-drop system has no unacceptably large stresses and the 
forces generated by surface tractions may, in principle, be balanced by fluid 
mechanical forces and therefore spreading rates can be determined. As is evident 
later, monolayer dynamics are of particular importance since the drop’s molecules 
are all in the monolayer state, given enough ‘clean’ surface on which to  spread. It 
is interesting to  note the analogy with a moving contact-line problem on a solid 
surface, as discussed by Dussan V & Davis (1974), Greenspan (1978) and Cox (1986), 
amongst others. There, an infinite stress is predicted a t  the contact line on the solid 
surface, however, it is not widely accepted that an analogue of the monolayer 
resolves the ensuing spreading paradox. 

To study the nature of monolayer-droplet spreading, and to examine the effect of 
the principle forces in the system, we consider the system in a reference frame in 
which the motion appears to  be steady. Equivalently, this can be considered as a 
problem with a moving wall beneath the liquid lining. The fluid stresses gencrated by 
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the moving wall balance the stresses a t  the interface. To achieve such a steady state 
requires artificial boundary conditions a t  the drop. Some collection of forces must be 
imposed to hold the droplet or terminal end of the monolayer stationary with respect 
to the new reference frame. In  fact, in the original reference frame the drop moves, 
e.g. is being ‘scraped’ along the surface. Thus any estimate of the spreading rates, 
by assuming quasi-steady motion for instance, will be an overestimate because of the 
additional artificial forcing. Nevertheless, the problem serves as a soluble 
introduction into the dynamics of the system. 

3. Monolayer dynamics 
The fluid motions within the liquid lining are governed by the Navier-Stokes 

equations; if (u*(x*, y*, t * ) ,  v*(x*, y*, t* ) )  is the velocity vector and p*(x*, y*, t * )  is 
the pressure in the fluid, then 

p2[ut*. +u*u:* +v*u$*] = -p$ +pZ*(u;*Z* +u$*y*), 

p2[v$ +u*v:* +v*v$*] = -p;* +pz* g* +p.f(v:*:*,* +v$*y*)’ 

(3.1) 

(3.2) 

and conservation of mass is satisfied when 

u:* + u;* = 0. (3.3) 

Boundary conditions which complement (3.1)-(3.3) are that there is no flow of fluid 
through the rigid wall nor through the interfaces and, finally, that stresses balance 
a t  the interfaces between fluids. These relationships will be given explicitly below. 

Given that spreading occurs an obvious simplifying feature is the lengthscale along 
the lining versus its resting thickness, h*. Lubrication theory approximations are 
therefore suitable so that the equations above may be approximated by 

(3.4) 

The solution for v* follows from the equation of continuity (3.3) and from solving for 
u* in (3.4). The pressure p* is a t  most a linear function of y*, which follows from the 
lubrication approximations applied to  (3.2), and where the coefficients are prescribed 
by boundary conditions. Note that the pressure gradient p$ is independent of y*, 
therefore the horizontal velocity is approximately a quadratic function of y*, where 
the coefficients of each power of y*, functions of x* and t * ,  remain to be 
determined. 

The driving forces, gravity, capillarity and tangential stress gradients a t  the 
interface, are balanced by viscous forces in the liquid lining and the additional 
dissipative effects associated with the interface, i.e. surface viscosities. Fluid inertia 
in the lining and in the surface is negligible in the balance of forces. These effects may 
be estimated from (3.1) and (3.2) where the terms on the left represent inertial 
acceleration of fluid particles ; the relative importance of these terms is discussed 
below. 

Let y* =H*(x* , t*)  define the height of the liquid lining above the rigid wall 
y* = 0, where the superscript * generally signifies dimensional quantities. The 
pressure acting on the fluid, just below the interface, is given approximately by 

p* 1 H *  = - q*H2kZ*, (3.5) 
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while the pressure acting just above the surface is a constant, say 0. From the 
lubrication approximations the pressure throughout the liquid lining may be written 
as 

P*(x*, y*, t*) = p$g*(H*-y*)-~*H$,*,  

pE*(x*, t * )  = p ;  g*H,**- (U*H:*Z*)x*. 

(3.6) 

and hence the pressure gradient is given by 

(3.7) 

Also, there is a balance of tangential fluid stresses exerted on the interface 
y* = H*(x*,  t*) with surface-tension gradients and additional stresses from 
surface viscosity, i.e. 

where we have supposed that the interface monolayer behaves rheologically as a 
Newtonian interface (Scriven 1960). Note that for two-dimensional flows there is no 
two-dimensional shear in the plane of the interface, thus the stress that results is due 
to a dilational viscosity, K* (> 0) ,  multiplied by the rate of expansion of the 
interface. 

Let u,*(x*,t*) be the velocity of fluid a t  the interface. Then by virtue of the 
quadratic nature of u*(x*, y*, t*) (with y* variations), and the lubrication balance of 
stress in the substrate (equation (3.4)), u,* is governed by (3.8), giving 

Having determined the surface velocity the complete velocity field may be written 
as 

(3.10) 

where no slip of fluid along the rigid plate is an imposed boundary condition. The 
remaining boundary conditions, those of purely kinematic nature, are best imposed 
by the following formulation: let q* be the flux of monolayer material along the 
interface ; and let Q* be the flux of material (substrate fluid) between the rigid plate 
and the interface. Then we have 

q* = u,*(x*, t * )  r*- D*I'$, (3.11) 

where the flux is due to  advection (the first term) and diffusion (the second term), 
and 

Q* = p ;  I* u*(x*, y*, t*) dy* (3.12) 

is a purely advective flux. Conservation of mass then requires that 

q* + qz* = 0,  (3.13) 

and p;H,*,+Q$ = 0 ;  (3.14) 

where the first equation is for material in the interface, the second for material in the 
substrate layer. 

FLM 193 6 
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Equations (3.13) and (3.14) are solved subject to some initial conditions and also 
some end conditions, which are described later. With these, the state of the spread 
a t  any subsequent instant is determined. However, the practical application of this 
system is complicated, particularly when the velocity u* a t  each time instant 
requires explicit calculation from (3.9), due to  surface viscosity. Thus, for an initial 
investigation, we ignore surface viscosity, K* = 0, and later the order of magnitude 
of the corrections due to a small finite K* is estimated. Secondly, we investigate 
conditions for steady-state solutions of the system. 

4. A steady state flow 
Suppose the flow is steady in a reference frame moving with constant velocity 

U:, and furthermore that the coordinate axes are moving, fixed with the monolayer. 
Then we obtain the fluid velocity in the liquid lining from (3.9) as 

where pz* is given by (3.3). The mass flux of material in the liquid lining, from (3.12), 
may be written as 

Moreover, to conserve mass, 
Q* = p; h*U& (4.3) 

where the right-hand side is the mass flux of liquid lining itdhering to the moving 
wall far upstream (as x * + - ~ )  where the interface is both flat and relatively 
uncontaminated. 

Also of importance, with respect to transport of the interfacial contaminant, is the 
surface velocity u,*, where 

(4.4) 

The mass flux of contaminant along the interface is then given by (3.11) coupled with 
(4.4). Far upstream q* = 0, because the surface there is uncontaminated. Then by 
virtue of insolubility of the contaminant and to conserve mass, 

q*(x*) = 0, (4.5) 

everywhere on the interface. Finally, given equations of state for a*(T*) and D*(T*) 
(see $6  below), (4.1) and (4.4) together with the flux constraints allow, in principle, 
for the calculation of H* and r* as functions of x*. Then some measure of monolayer 
length, to be made precise later, is available as a function of U z  and this is the main 
result of practical significance. 

5. Dimensional scalings 
It is convenient to consider flow quantities as dimensionless multiples of chosen 

reference scales. Clearly velocities may be measured relative to U;, heights relative 
to h* and, less obviously, lengths relative to L* = (S*/U:pt )h* .  The latter 
lengthscale represents an emphasis on balancing surface-tension gradients with 
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viscous shear stresses. Implicit in the work so far is the lubrication asumption, for 
this to be valid we must have h*/L* = h 4 1. In particular, this means that only wall 
velocities much smaller than S*/,uu,* (x 1 cm s-l as estimated below) can be 
considered. Lastly, the surface concentration is measured relative to  although this 
is completely arbitrary as this parameter does not appear in any critical way. The 
principle equations, in non-dimensional form (with superscripts * suppressed), 
are : 

and 

where the pressure gradient is given by 

P, = w, - h2([,F + u1 H,Z)Z. (5 .3)  
The dimensionless surface tension is u*/&* = ,F + u and the scaled surface diffusivity 
is D = D*/D,. The end conditions for this system of equations, a t  the extremities of 
the monolayer, are that r = 0 at the leading ‘edge’ of the monolayer, while T-t 00 

near the bulk-droplet-monolayer boundary. 
The key non-dimensional parameters which now appear as given as:  

p; g*h*2 O-f + UT2 D,* PZ* , a=- 
S* 3 $=7 S*h* ’ O 1 =  

where D,* is the (constant) dilute diffusion coefficient. Notice that the capillary term 
in (5.3) is necessarily small provided that the lengthscale for surface-tension 
variations is sufficiently large ; equivalently, that S* is not too small. Therefore, 
capillary forces are generally only important a t  the ends of the monolayer in some 
axial boundary-layer region a t  the bulk droplet and a t  the tip of the monolayer. Note 
that this also means that the dimensions of the drop, supposing that it is held 
principally by capillary forces, will have much smaller horizontal scales than the 
typical monolayer scales and therefore may be approximated as the neighbourhood 
of a point. Additionally, this means that the dynamics of the drop are of lesser 
importance in as much as total contaminated area is concerned. 

Typical values of the parameters may be estimated by taking, for instance, the 
values p; = 1 g emp3, g* = 980 cm s - ~ ,  uu,* = 40 dyn cm-l (average), S* = 10 dyn 
em-’, ,u: = 10 Poise (large) and with h* = lo-’ pm (small). I n  all but the most 
extraordinary circumstances, say with S* 6 u,* (a case of little practical significance), 
the parameters 01 and h are both very small (< lop4), where O(1) values are 
anticipated to indicate physical significance. The only parameter above which may 
be important is 6. However, surface diffusivities are difficult to measure and 
generally small. Nevertheless, taking a value of D,* = lop5 em2 s-l leads to a value of 
6 = 1,  indicating probable significance. Moreover, experimental measurement of 
surface diffusion find that such values of D,* are not unreasonable (Sakata & Berg 
1969). More extreme parameter values, e.g. larger viscosity and thinner lining 
thickness, tends to enhance 6, therefore the mechanism of surface diffusion warrants 
investigation. In contrast, to enhance the other parameters to O( 1) values requires 
more ‘exotic ’ mechanical properties of the liquid lining. 

The surface-viscosity effect mentioned above, may be categorized by the 
parameter K ,  which gives the order of magnitude of the surface-viscosity stresses 
relative to surface-tension gradients. Scaling equation (3.9) yields the dimensionless 

A 2 .  
parameter K* 

K = -  

6-2 
h * d  
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Then with the values given above and for surface viscosities of the order of 
10-3-10-1 surface Poise (typical for most liquids) non-dimensional corrections to the 
flow field will be of 0(100h2). According to the lubrication approximation, K is 
small enough if h is small enough and we shall suppose that it is. Initially, how- 
ever, immediately after droplet deposition, when h % O( l) ,  it appears that 
surface-viscosity effects are significant. 

Finally we consider the inertia terms which are neglected a t  leading order in the 
lubrication approximation. From (3.1) and (3.2) these are proportional to 

where Re is the Reynolds number based on layer thickness (and which itself is small), 
therefore the inertia terms are always small. 

6. Equations of state 
To make further progress i t  is necessary to assume that the local surface tension 

and local surface diffusivity are functions of the local surface concentration (i.e. the 
local state of the interface). Accordingly we write 

= g(r), D = qr), 
as the equations of state. Quantitative experimental tabulation, or theoretical 
estimates, of these relationships is difficult and, particularly for the latter, rare. 
However, in the dilute-surface-concentration limit, as r+O, we have v+ 1 and 
D-t  1 because of the choice of scales. Also we extend the domain of validity of the 
'monolayer' state beyond the point of 'close packing', i.e. f = 1. In  particular. we 
assume that cr+0 as r+ 00, i.e. in the limit of 'infinite' surface concentration the 
tension appropriate for a bulk droplet is attained by the extended monolayer. Almost 
all surface chemistry ignores the extended monolayer domain. Equations of state for 
f < 1 are reasonably well documented (e.g. Adamson 1967 ; Gaines 1966). Foda & 
Cox (1980) determine an extended surface-tension equation of state for an oil layer 
on water ; thus, in principle, such measurements are possible and therefore equations 
of state are assumed to exist for all r. Foda's results are shown in figure 2, and are 
for an oil layer (Dow Silicone 100 cP oil) on water. Furthermore, regarding ~ ( 0 ,  the 
theoretical behaviour for large r, i.e. the form as f + 00, follows from Sheludko 
(1966) and must behave like g ( r )  N r3. Thus we assume that 

V ( r )  = ( 1  + O f ) - 3 ,  (6.1) 

where B is an empirical constant, models the surface tension adequately. Shown on 
figure 2 is a sample equation of state with 6' = 0.15 in (6.1). In  fact, the parameter 
6' is determined by simple material properties of the monolayer constituent. From 
Adamson (1967) monolayers in the dilute concentration limit. so called gaseous 
expanded monolayers, follow the (dimensional) 'law ' 

B*T* 
g* = a;--- M* c1 

whereR* is the gas constant, T* is the temperature (assumed constant) and M" is the 
molecular weight of the monolayer material, from which /3 is prescribed. 
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1.2 I 

0 1 2 :1 4 5 6 7 8 

FIGURE 2. Foda & Cox's equation of stahe (experimental data points (a)) and a curve from the 
model equation of state (6.1) with 0 = 0.15. 

r 

Results for surface-diffusion properties are less well documented but the results of 
Sakata & Berg (1969) are useful. Therefore we examine several alternative choices for 
D ( T )  and attempt to find reasonably general results. Let 

D ( r )  = ( l + T r ) - "  (6.2) 

be an equation of state for diffusion. n and T are empirical parameters, which both 
satisfy n, 7 > 0. Equation (6.2) embodies most of the essential physics : firstly, the 
' correct ' dilute limit ; and secondly, disenhancement of diffusion as surface 
concentration increases because the mobility of molecules in the interface becomes 
increasingly impeded. This effect was investigated by Sakata & Berg (1969) who 
measured diffusivity for a 'gaseous ' monolayer and for an 'intermediate ' monolayer 
film, a monolayer state for larger surface concentrations and not described by the 
linear 'law ' given above, and found the diffusivity correspondingly reduced in the 
latter case. 

An alternative law. emphasizing the disenhancement effect explicitly, is given 
below, where the diffusive mechanism 'switches off' a t  the close-packing limit of 
surface concentration : 

D(r) == (1  -0" (r < l ) ,  

(r > 1) .  (6.3) I= 0 

The equations of state expressed by equations (6.1)-(6.3) may be expected to govern 
fairly wide classes of monolayers. 

7. Surface-tension-gradents/surface-diffusion solution 
When the pressure gradient and surface diffusion terms are ignored in (5.1) and 

(5 .2) ,  the solution and the flow that it represents is trivial. We then have, for the 
region covered by a monolayer, between cr = 0 and = 1, 

a,(%) = -+, Us(%)  = 0, H ( x )  = 2, 
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FIGURE 3. Schematic of a steady flow with a moving wall and with a monolayer held 
stationary. Surface diffusion is negligible (almost everywhere). 

all constants for all such x. By virtue of the constant gradient of LT, the monolayer 
exists over a finite length from x = - L to x = 0. The monolayer in this case acts as 
a rigid plate of length L = 2. Ahead of the monolayer, extending to infinity, the flow 
is simply represented by 

a(x) = 1, us(x) = 1, H ( x )  = 1 (for x < - L  say)). 

Figure 3 illustrates the flow and the discontinuous transition a t  the leading edge of 
the monolayer. Such behaviour is assumed to be ‘smoothed out’ by including the 
neglected terms when shorter lengthscales are appropriate. This is explicitly 
demonstrated below, when surface diffusion is included as a significant effect. In fact, 
when 6 is O(1) there is no discontinuous transition a t  all, and when 6 is small the 
lengthscale on which the discontinuity is smoothed out is short, of length O(6).  

Suppose that we now account for surface diffusion. The equations governing the 
flow are 

+crxH2+H = 1, (7.1) 

and ( a x H +  1) r = mr,. ( 7 4  

Note that the pressure gradient within the fluid is still negligible (i.e. the parameters 
a and h2 are both small), therefore the pressure throughout the thin layer is, to 
leading order, that of the ambient ‘atmospheric’ pressure, so p = 0. End conditions 
for (7.1) and (7.2) are that 

r+1, H - t l ,  r+O a s x - t - a ,  

and a+O, r+co asx+O, 

where a possible arbitrary origin shift permits the latter statement. The equations of 
state, discussed in $6, complement the system and, together with the end (boundary) 
conditions, permit solutions to  be obtained. 

I n  contrast with the ‘diffusionless’ case the monolayer now extends an infinite 
distance upstream, the concentration diminishing exponentially with distance. A 
finite measure of length, L,, is defined later so that  quantitative comparisons with the 
diffusionless solution can be made. Note also that the surface velocity u,(x) is no 
longer zero along the monolayer. I n  fact advective transport is balanced by the 
diffusional transport, maintaining zero total transport. 
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Solution of (7.1) and (7.2) is facilitated by regarding all quantities as functions of 
u and the x dependence then follows by knowing u(x), which is calculated below. 
Thus we arrive a t  

(7.3) 

obtained by eliminating CT, from (7.1) and (7.2) then solving the resulting quadratic 
equation for H .  This then leads to the relationship 

(7.4) 

H ( n )  = 1 -$(a) + (1 + $(u))f, 

u,(x) = - (1 + (1 + $(u));)-l, 

and where, in all of the above, 
- ~ D ( c T )  dT 

T(a)  d o ’  

is related solely to the equations of state, with u interpreted as th_e state variable, and 
the surface-diffusion parameter, 6. Some general properties of 8 are : 

8- (i-u)-l as u+ 1, 6 N uinpl as u i .0 ,  

(for equations of state like (6.2) where the parameter n is defined). If, for example, 
n < 3 the steady state solution could not exist, implying a non-zero velocity a t  the 
drop-monolayer boundary, which is assumed to  be stationary in the present reference 
frame. In  fact the surface velocity is given by 

6(u) = -___- 

,. - - 

u,(u) = s’cu) (1+(1+5(u))f)-l, (7.5) 

which vanishes if, and only if, 8= 0. Thus, for a steady solution to exist we are 
restricted to smaller classes of possible equations of state. Given such equations of 
state, the height of the substrate layer a t  the monolayer/droplet boundary is 
predicted to be H = 2,  independent of equations of state, so this is simply a 
statement of conservation of mass. 

A useful property of the monolayer solution is a finite measure of monolayer 
length, say L,. E is a small number (for practical purposes), and L, is chosen to be the 
length of monolayer state over which the (scaled) surface tension changes from 0 to 
1 - E .  Thus Le+ co as E + O .  For our purposes e = 0.05 is useful. To determine the 
spatial structure of the solution we need u as a function of x. This is given, implicitly, 
by integrating (7.4), i.e. 

x(u)  = --u- (I+$(d)):da‘, (7.6) I 
where, as noted earlier, it  is possible to define x(0) = 0 as the origin. An explicit 
expression for L,, therefore, is 

L, = l-e+S,” ( l+$);da.  (7.7) 
* 

While many possible forms of $(a) allow for explicit integration of (7.6) and (7.7),  it  
is more convenient to calculate these integrals numerically, which allows s(o) to be 
taken in a more general form. For this task we use Simpson’s rule (see Abramowitz 
&, Stegun 1972, p. 886) to integrate, and choose two discretization step sizes, h and 
2h (where typically h = 0.001) then extrapolate to obtain accurate results. 

Figures 4 and 5 show results for u ( x ) ,  for several values of 6, and the respective 
‘equations of state ’ (described below) 

- i= (+&u+(l-&l (n  = 4) ,  
- 

and s” = (!&I CT( 1 - (n = 6) .  
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FIGURE 4. Results for surface-tension variations, a(z), for the monolayer covered region ; 
equations of state (6.1) (0 = 1 )  and (6.2) (n = 4,7 = 1) and for diffusion parameter 8 :  6 = 0.0(.), 
0.5(A), 1.0( m), Z.O(V) and 4.0( +) (increasing diffusivity). 
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FIGURE 5. Results for surface-tension variations, a(%), for the monolayer covered region ; 
equations of state (6.1) (0 = 1) and (6.2) (n = 6 , 7  = 1)  and for diffusion parameter 8 :  8 = 0.0(.), 
0.5(A), 1.0( W),  2.0(V)  and 4.0( +) (increasing diffusivity). 

Note two things: firstly, any value of the diffusion parameter, 6, smooths out the 
discontinuity illustrated in figure 4 ; secondly, the upstream influence of the 
monolayer becomes increasingly significant as 6 increases. Both these limits (i.e. 
small and large 6) are considered below in full detail. Corresponding results for the 
layer thickness and surface velocity, as functions of x, are given in figures 6-9, again 
showing the smooth transitions with finite surface diffusion. The equations of state 
used for the numerical work are obtained from $6 assuming the following: the 
parameters 0 and r are both unity and that the exponent n is, respectively, 4 and 
6. 
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FIGURE 6. Results for substate height, H(z) ,  for the cases described in figure 4. 
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FIGURE 7. Results for substate height, H ( z ) ,  for the cases described in figure 5 .  

X 

X 

FIGURE 8. Results for surface velocity, us(z), for the cases described in figure 4. 
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FIGURE 9. Results for surface velocity, us@), for the cases described in figure 5 .  

8. Asymptotic solutions 

the first limit; 6 small implies that ,  almost everywhere, 
Explicit general results are available in both limits as either 6 + 0 or a3. Consider 

C T ~  z -t, H z 2 ,  

except when the surface concentration is very small, which leads to 

H z l  ( rx0 ) .  

Here we are restricted to a, h2(+ + cr) < 6 4 1. Thus as diffusion becomes less and less 
important for decreasing 6 ,  the discontinuous solution described in the previous 
section is an increasingly good approximation. However, the solution is never really 
discontinuous, because near cr = 1 a new scale for variations becomes important. In  
general - 
when (r is near to  1 ,  thus we put 

s- 6(l-CT)-1 

0- = 1-65, x = -2+sg, 
then the local problem (about x = - 2 ,  where 5 and 5 are both O( l)), which describes 
the transition from H = 1 far upstream and H z 2 a t  the monolayer, is governed by 
the equations 

and 

cr 

(from the corresponding equations (7.1) and (7.2)).  The local spatial structure of the 
transition region is given by integrating (8 .2) ;  then 

d + ( 1 + 52); + 1 I ’ [ 
6+ ( 1  +?)i- 1 t(d) = d+(1+32)++log 

which gives 
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i.e. the far upstream behaviour, with exponential decay of 8 (and r )  with distance 
upstream, and 

6 ~ 2 3  a s 3 + c o ,  

i.e. matching onto the tip of the monolayer where the tension varies linearly with 
distance (with slope approximately -+). Thus (8.3) clearly embodies the solution in 
the transition region. Therefore we have the leading-order structure for the steady 
solution, higher-order corrections depend strongly on the precise nature of the 
equations of state, and are anyway not important practically given the approximate 
nature of the problem. 

From (8.3) it also follows that 

L, = 2-&6 where ct 1: loge-log2+1+ ..., 

so that for e small enough ,& is negative and perhaps reasonably large. Therefore the 
effective monolayer length is increased to a relatively large degree by even a small 
surface diffusion effect. 

Of less physical interest is the limit of large 6. Now, conversely, a new long 
lengthscale is appropriate for variations of monolayer quantities ; consequently we 
put x = 136. Now H x 1 almost everywhere, but the surface tension varies with 
distance according to * 

note that the right-hand side of (8.4) is independent of the parameter 6. Once again 
the solution may be obtained explicitly by quadrature, except in a small inner region 
about the monolayer/drop boundary where diffusive transport becomes smaller and 
the substrate-layer thickness varies appreciably. Thus near g = 0 the solution is 
governed differently, on an inner lengthscale which is dependent on the equations of 
state, i.e. we put 

where p = fn - 1 and 6,s O( 1) describes the inner region. The equations governing the 
inner solution, again from (7.1) and (7.2) are 

at(() = - W ( o )  ; (8.4) 

0- = s - e ,  x = B - q ,  

H ( 6 )  = 1--6fl+(1+62fi)t, (8.5) 

and +(() = - (1 + (1  + 62@)$-1, (8.6) 

where 6 takes values from the range 0 < 3 < 03. The boundary conditions are those 
to ensure matching where the monolayer/drop join as 6+ 0, and matching with the 
solution given by (8.4) as &+ 03. A simple case arises when p = B, then the solution 
of (8.6) may be written, implicitly, as 

which shows the required matching behaviour both as 6+0 and as 6+ CO, e.g. as 
6+03 then (8.7) implies that 

( N -52, 

in accordance with the solution of (8.4) as o + O  (when p = k). The general integral of 
(8.6) is cumbersome (it may be found in terms of incomplete /3 functions; see 
Abramowitz & Stegun 1972, p. 263) and is not pursued here. 

To leading order in 6, Lje is given by integrating (8.4), so 
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FIGURE 10. Effective monolayer length as a function of dimensionless dilute diffusivity constant, 
8, for three different diffusion equations of state: as in figure 4 (a), as in figure 5 (A) and for 
equation (6.3) (n = 2 )  (H). 

- 
where s” = -68which is independent of 6; corrections to & will be of O(8-8) but these 
are not calculated here. Moreover, the integral in (8.8) can be approximated to 
give 

& = -loge+O(l),  

independently of the particular choice for the equation of state. Thus 

L, N -6loge 9 2, 

i.e. the effective monolayer length is very large, relative to the ‘ diffusionless’ case. 
As mentioned, this example is of lesser importance than the former since surface- 
diffusion transport of contaminant is not expected to be the principle mechanism 
governing the monolayer dynamics. 

9. Effective monolayer length 
With L+ defined by (7 .7) ,  and with e chosen as 0.05, figure I0 shows curves for 

L,(6), as a function of 6, for three different equations of state for the diffusion 
coefficient. Curves 1 and 2 (n  = 4 and 6 respectively) have diffusive mechanisms 
persisting for all surface concentrations of contaminant, while curve 3 shows the 
results for a system where surface diffusion is totally insignificant past the close- 
packing limit r = 1 .  For this latter case the exponent in the equation of state was 
chosen as n = 2;  note that for n < 1 the solution gives an interface which has a 
discontinuous slope when r = 1. 

The relative insensitivity of the results on the particular choice of equation of state 
indicates that the results obtained may exhibit fairly general trends for a wide class 
of possible equations of state. This robustness is essential given the crude nature of 
the model. The monolayer ‘length’, L,, is, however, a strong function of the dilute 
diffusivity Do. The effective length is the primary practical result from the analysis, 
as shown in $10, estimates for spreading rates under fairly general conditions are 
influenced by the values of L,. 
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FIGURE 11. Spreading rate, @,, as a function of monolayer length, L:, from equation (10.2) ; 
parameters: S* = 10 dyn/cm, h* = em, pz = 10 P and 8 = 0.1. 

10. Spreading rates 
From a practical point of view, determining how fast a monolayer spreads out is 

of much interest. While the problem considered above deals only with steady states, 
the solutions do, nevertheless, represent dynamical balances of the forces in question 
and therefore provide an order of magnitude estimate for the quasi-steady spreading 
case. The spreading rate is measured principally by the velocity of the ‘tip ’ of the 
monolayer. Also, in two dimensions, the monolayer geometry is best characterized by 
the length of the monolayer, thus the spreading rate (rate of change of the monolayer 
length) needs to be characterized in terms of that length. 

Let L$ be the effective length of the monolayer ; therefore L$ is a measure of the 
spreading rate. We now imagine the monolayer spreading out with time, in a quasi- 
steady fashion; then we may identify L$ with U$ and, moreover, from 935-9, the 
effective monolayer length may be written as 

S*h* 
(10.1) 

(10.2) 

holds. The right-hand side depends only on the material properties (i.e. S*, Dg*,&) 
and the initial conditions (i.e. h*); the purely numerical factor, L,(S), may be 
estimated from figure 10. Figure 11 shows a sample plot of the relationship given by 
(10.2), with parameter values as given above. Note that the spreading rate becomes 
increasingly small as the monolayer spreads out. This is because the gradients of 
surface tension become correspondingly small. 

Integrating (10.2) provides an explicit relationship for the state of the monolayer 
with time : 

(10.3) 
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FIGURE 12. Monolayer length, L:, as a function of time, t * ,  from equation (10.3) ; parameters 
as in figure 11. 

From (10.3) useful properties of the spreading process can bc found, for example the 
total area covered as a function of time. A sample plot of relationship (10.3) is given 
in figure 12, with the parameter values as given above. 

Note that such spreading implies an O(t*i) growth in total contaminant mass in the 
monolayer, i.e. the bulk drop must continuously provide material for a monolayer 
that is spreading indefinitely. Therefore the quasi-steady assumption can only be 
valid provided that the bulk-droplet source is large enough to continually provide 
the necessary flux of material into the monolayer. This constraint may act to 
diminish spreading rates when, ultimately, the drop is depleted. Nevertheless, 
spreading as governed by equations (9.2) and (9.3) can be expected to be 
approximately valid for portions of the monolayer evolution. 

Two-dimensional spreading with a t*i growth of the monolayer length has been 
observed experimentally. Ahmad & Hanson (1972), using oleic acid spreading on a 
glycerol layer (with X* = 20 dyn cm-l, ,uz = 10 P and h* = 0.034.12  ern (large)), 
found just such behaviour, and furthermore provided an ad hoc theory justifying the 
result. The t*i result is a very robust prediction, coming from dimensional analysis 
of (3.13) and (3.14). The theory of Ahmad & Hanson (1972) agrees with the 
experiments more closely, with result (10.3) overpredicting the spreading rate by a 
factor of 2 / 2 .  This is to be expected. The theory of Ahmad & Hanson (1972), 
however, suffers from unjustifiable assumptions, whereas the equations in $3  may be 
solved (ultimately) to provide fully unsteady solutions. Also we note that the regimes 
that Ahmad & Hanson (1972) investigate have parameter values that suggest that  
gravity should be important, in fact, a is O( 1) for the thicker layer ; thus i t  is entirely 
fortuitous that the simple ‘dimensional analysis ’ provides accurate results for the 
spreading rates. 

11. Discussion 
In  the previous sections a steady-state problem was posed to  address monolayer- 

spreading phenomena. Distributions of monolayer surface concentration, substrate 
height and surface velocity were obtained explicitly, as functions of the material 
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properties. In  particular, dependence on surface diffusivity was highlighted with 
asymptotic results relevant for both small and large surface diffusivity obtained. 

I n  the absence of surface diffusivity, the film thickness, film velocities and 
monolayer-concentration gradients are discontinuous a t  the leading edge of a finite 
length monolayer. When surface diffusion is present, the monolayer is infinitely long 
and now the dependent variables are everywhere continuous. The variation of 
surface tension occurs over a longer domain, hence the monolayer gradients of surface 
tension are smaller for - 2 < x < 0 and larger for x < -2 when compared to the 
diffusionless case. I n  the interval - 2 < x < 0, the reduction of these tractions, which 
oppose the shear force of the underlying moving film, leads to an increase in surface 
velocities. On the other hand, the region x < -2  experiences an increase in surface 
tractions leading to a decrease in surface velocities. Note that, in order to conserve 
mass, increases (decreases) of surface velocity require a corresponding decrease 
(increase) in film thickness. This explains the crossing of curves in the region x < - 2 
of figures 6-9. 

Surface diffusion leads to successively faster spreading rates when systems of the 
same effective length, L;, but successively larger diffusivities, are compared. The 
reason being that while the dynamic forces are essentially the same (same surface- 
tension variation over the same length) there is greater kinematic spreading due to 
the larger diffusive flux. 

The main qualitative difference between the solutions obtained with the first set 
of equations of state examined and the second was the regularity of the solution near 
x = 0 (the monolayer-droplet boundary). It was noted earlier that steady-state 
solutions exist only if the diffusivity vanishes fast enough a t  large monolayer surface- 
concentrations. When this condition is just met (n = 3+ in (6.2)) the solution changes 
rapidly near the bulk droplet boundary, but for sufficiently rapid fall (larger n)  the 
solution will be smooth. Thus, in figures 6 and 8, for the case with n = 4, we see that 
slopes become large near x = 0, while for n = 6, as shown in figures 7 and 9, the slopes 
are always O( 1) .  Despite this qualitative difference the quantitative difference 
between the solutions for the respective equations of state is surprisingly small when 
far enough removed from x = 0. In  fact only the details of the solution near x = 0 are 
sensitive to the form of the equation of state, furthermore, for quantities such as 
monolayer length which depend on integration of (7.41, the details about x = 0 are 
relatively unimportant and so from figure 10 curves for effective length are 
qualitatively similar. A general conclusion from figure 10, therefore, is that effective 
length increases approximately linearly with 6 (at least for large enough 6) and 
consequently that the spreading rate increases like d while decreasing with time like 

With regard to pulmonary mechanics the principle significance of this work is to 
provide parameters in order to assess similarity of bench top experiments and 
relevant lung lining flows. Those dimensionless parameters identified in 9 5 should be 
matched as closely as possible with the values appropriate for the lung (see 95) in 
order to mimic the mechanical properties of the lung. 
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